Piezoelectric-silicone structure for vibration energy harvesting: experimental testing and modelling

Author:

Zabek DanielORCID,Pullins Rhys,Pearson Matthew,Grzebielec Andrzej,Skoczkowski Tadeusz

Abstract

Abstract Mechanical vibrations from heavy machines, building structures, or the human body can be harvested and directly converted into electrical energy. In this paper, the potential to effectively harvest mechanical vibrations and locally generate electrical energy using a novel piezoelectric-rubber composite structure is explored. Piezoelectric lead zirconate titanate is bonded to silicone rubber to form a cylindrical composite-like energy harvesting device which has the potential to structurally dampen high acceleration forces and generate electrical power. The device was experimentally load tested and an advanced dynamic model was verified against experimental data. While an experimental output power of 57 μW cm−3 was obtained, the advanced model further optimises the device geometry. The proposed energy harvesting device generates sufficient electrical power for structural health monitoring and remote sensing applications, while also providing structural damping for low frequency mechanical vibrations.

Funder

Royal Academy of Engineering

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference44 articles.

1. Hybrid energy harvesting technology: from materials, structural design, system integration to applications;Liu;Renew. Sustain. Energy Rev.,2020

2. Electromagnetic energy-harvesting shock absorbers: design, modeling, and road tests;Li;IEEE Trans. Veh. Technol.,2012

3. Energy harvesting technologies for tire pressure monitoring systems;Bowen;Adv. Energy Mater.,2015

4. Electromagnetic energy harvesting from vibrations of multiple frequencies;Yang;J. Micromech. Microeng.,2009

5. Triboelectric nanogenerators as self-powered active sensors;Wang;Nano Energy,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3