A polynomial constitutive model of shape memory alloys based on kinematic hardening

Author:

Yang Cheng,Zhang Dayi,Scarpa FabrizioORCID,Zhang QichengORCID,Sun He,Zhang Xiaoyong

Abstract

Abstract This paper describes the derivation of a phenomenological model for shape memory alloys under the framework of classical plasticity theory. The proposed model combines the Souza constitutive approach with kinematic hardening; the model requires solving only one nonlinear equation rather than several nonlinear ones, therefore increasing the computational efficiency and convergence. Moreover, the original Souza model is improved by adding an odd polynomial function to describe the phase transformation of the shape memory alloys, making it possible to use a lower number of parameters for the inverse identification of the constitutive properties of SMAs from simple tensile tests. A tangent stiffness formulation is also derived to simulate the variation of the elastic modulus during the phase transformation. The tangent stiffness formulation proposed here extends the one used in classical plasticity and improves the convergence of the proposed model. The reliability and fidelity of the model described in this work are benchmarked against experimental data and other models. The numerical results show that the proposed phenomenological approach can describe well the pseudoelasticity and shape memory effect of shape memory alloys. The formulation described in this paper can be readily generalized to finite strains and other formulations based on existing formulations related to classical plasticity theory.

Funder

Innovation Centre for Advanced Aviation Power

National Natural Science Foundation of China

Major projects of aero-engines and gas turbines

Swansea University

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3