Design, testing and control of a smart haptic interface driven by 3D-printed soft pneumatic actuators for virtual reality-based hand rehabilitation

Author:

Dragone DonatellaORCID,Randazzini LuigiORCID,Stano GianniORCID,Capace AlessiaORCID,Nesci FrancescaORCID,Cosentino CarloORCID,Amato FrancescoORCID,Colao RobertoORCID,Percoco GianlucaORCID,Merola AlessioORCID

Abstract

Abstract This work presents the main steps of design and testing of a novel haptic interface and adaptive admittance control scheme for optimal regulation of the human–machine interaction in hand rehabilitation mediated by a smart system in virtual–reality environment. The prototype development is the result of an integrated HW/SW design and, moreover, the advantages from additive manufacturing techniques and mechanical properties of soft materials are exploited for the realization steps. Indeed, to make the interface smart, a network of piezo-resistive force sensors is embedded into the user’s command interface and the acquired signals are used for the adaptive regulation of human–machine interaction. Another distinctive feature of the haptic interface, which enables to identify this latter as a smart system, is the interaction control based on the estimation of the user’s intention within a novel scheme of adaptive admittance control. The enhanced training process in rehabilitation assisted by the haptic interface and virtual environment has been experimentally validated during a series of goal-directed tasks. The improvement of the motor performance of the user under the assistance of the adaptive admittance control has been experimentally evaluated. Further results show that the rehabilitation system supports the quantitative assessment of the robustness of the motor learning performance of the hand under the generation of haptic disturbances.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3