Low-cycle fatigue behavior of Cu–Al–Mn superelastic alloys at different temperatures

Author:

Hong HuanpengORCID,Gencturk BoraORCID,Aryan Hadi,Jain Amit,Araki Yoshikazu,Saiidi M Saiid,Kise SumioORCID

Abstract

Abstract Superelastic alloy (SEA) bars are widely used in structures subjected to moderate and strong earthquakes. Compared with conventional nickel-titanium (NiTi) SEAs, Cu–Al–Mn (CAM) SEAs has received increasing attention recently due to their cost-effectiveness and easier machinability. The authors’ previous research showed that despite their lower strength and limitations in the maximum length, the CAM SEAs have comparable superelastic strain recovery, a wider temperature range, and superior strain rate stability compared to NiTi SEAs. However, the previous research was limited to a few specimens and only conducted to a few hundred cycles without considering the full deterioration in the material properties. Besides, the existing research on CAM SEA was only limited to small sample sizes at room temperature, while the fatigue performance of large diameter CAM SEAs under low and high temperatures relevant for civil engineering structures has not been reported. To fill this knowledge gap, low-cycle fatigue performance of 20 mm diameter CAM SEAs was studied at room temperature 25 °C, low temperature, −40 °C, and high temperature, 50 °C. Both single crystal and polycrystal CAM SEAs were investigated to determine their feasibility as concrete reinforcement under repeated high strain loading cycles expected during an earthquake. Strain cycles up to 50 000 have been applied at a tensile strain amplitude of 5%. Variations in the superelastic properties were observed and analyzed, including the stress–strain curves, elastic modulus, transformation stresses, damping ratio and recovery strain. Stable hysteresis has been observed for cycles exceeding tens of thousands at all temperatures demonstrating the suitability of CAM SEAs for seismic applications in civil engineering structures.

Funder

National Cooperative Highway Research Program

Fund for the Promotion of Joint International Research

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3