Abstract
Abstract
In this paper, a novel cylindrical metamaterial with helical cell exhibiting zero Poisson’s ratio (ZPR) in two different directions is introduced. Detailed Computer-aided design modelling of a curved optimised spring element is demonstrated for numerical and experimental analysis. High fidelity finite element models are developed to assess the homogenisation study of Poisson’s ratios, normalised Young’s modulus and torsion behaviour, demonstrating the curvature effect and independency of mechanical behaviour of cylindrical optimised spring element metamaterial from tessellation numbers. Buckling and frequency analysis of the cylindrical metamaterial with spring element are compared with equivalent shell cylinders. Moreover, experimental analysis is performed to validate the large strain ZPR and deformation mechanism demonstrated in numerical simulations. Finally, radical shape morphing analysis under different bending conditions for cylindrical metamaterial with helical cell is investigated, including deformation and actuation energy and compared with positive and negative Poisson’s ratio cylinders formed by honeycomb and auxetic cells.
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献