3D printed multilayer dielectric elastomer actuators

Author:

Su Sen,He TianORCID,Yang Hui

Abstract

Abstract In recent years, dielectric elastomer actuators (DEAs) have been widely used as flexible materials owing to their advantages of large strain, high efficiency, high energy density, and fast response in soft robots, grippers, and various artificial muscles. However, dielectric elastomers (DEs) are generally spin-coated and fabricated. The fabrication process is very complicated and cannot be realized quickly or in large quantities. In this study, we investigated a DEA that can be used for rapid fabrication via three-dimensional (3D) printing. This DE material can be rapidly cured using ultraviolet light and exhibits good mechanical and electrical properties. The material was modified based on CN 9021 (acrylate), and by adjusting the weight ratio of the diluent and crosslinker in the ink, viscosity and optimal mechanical properties that can be fabricated by 3D printing were obtained. The modified ink was then tested by printing it on a self-designed 3D printing platform, and the fabrication process was analyzed and improved to successfully produce DEA. The 3D printed single layer DEA can achieve a tip displacement of about 7.6 mm at the voltage of 2.5 KV. Comparing the driving performance of the DEA made by spin coating with that made by 3D printing, the DEA made by both fabrication methods showed the same performance. This 3D printing method greatly simplifies the DEA fabrication process and improves fabrication efficiency.

Funder

The National Defense Science and Technology Innovation Zone Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3