The effect of microstructural barriers on transient crack growth in shape memory alloys

Author:

Mutlu FatmaORCID,Anlaş Günay,Şehitoğlu Hüseyin

Abstract

Abstract There are several issues to be solved in the fracture mechanics of shape memory alloys, one of them being the resistance to crack growth and therefore to fracture. This paper discusses the crack growth in a single crystal CoNiAl shape memory alloy under cyclic loading and the effect of micro-structural barriers. To observe the crack growth in detail, tests are conducted on edge-notched specimens. The displacement field is obtained using digital image correlation (DIC), and the fracture parameters are calculated by fitting anisotropic crack tip displacement equations to DIC data. Similar crack growth behaviors are observed in both superelastic and shape memory specimens, with a comparatively higher crack growth rate in the superelastic case: first a crack initiates at the notch and grows, then new cracks are observed to form near the tip of the main crack, or on the notch when the growth slows down. Then, further cyclic loading leads to the growth of the main crack and the new crack simultaneously with the two cracks merging at the end. Test specimens are examined post-failure with optical microscopy to better understand this complicated behavior. Results showed the presence of a non-transforming secondary (γ) phase around the regions where the propagating cracks slowed down, deviated, and/or stopped, improving the resistance of the shape memory alloy specimen to fracture.

Funder

Division of Materials Research

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3