The investigation of the energy harvesting performance using electrospun PTFE/PVDF based on a triboelectric assembly

Author:

White PattarineeORCID,Pankaew PiyapongORCID,Bavykin Dmitry,Moshrefi-Torbati MORCID,Beeby StephenORCID

Abstract

Abstract This work presents an investigation into the energy harvesting performance of a combination of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) materials prepared using a one-step electrospinning technique. Before electrospinning, different percentages of the 1 micron PTFE powder were added to a PVDF precursor. The surface morphology of the electrospun PTFE/PVDF fibre was investigated using a scanning electron microscope and tunnelling electron microscope. The structure was investigated using Fourier-transform infrared spectroscopy and x-ray diffraction analysis (XRD). A highly porous structure was observed with a mix of the α- and β-phase PVDF. The amount of β-phase was found to reduce when increasing the percentage of PTFE. The maximum amount of PTFE that could be added and still be successfully electrospun was 20%. This percentage showed the highest energy harvesting performance of the different PTFE/PVDF combinations. Electrospun fibres with different percentages of PTFE were deployed in a triboelectric energy harvester operating in the contact separation mode and the open circuit voltage and short circuit current were obtained at frequencies of 4–9 Hz. The 20% PTFE fibre showed 4 (51–202 V) and 7 times (1.3–9.04 µA) the voltage and current output respectively when compared with the 100% PVDF fibre. The V oc and I sc were measured for different load resistances from 1 kΩ to 6 GΩ and achieved a maximum power density of 348.5 mW m−2 with a 10 MΩ resistance. The energy stored in capacitors 0.1, 0.47, 1, and 10 µF from a book shaped PTFE/PVDF energy harvester were 1.0, 16.7, 41.2 and 136.8 µJ, respectively. The electrospun fibre is compatible with wearable and e-textile applications as it is breathable and flexible. The electrospun PTFE/PVDF was assembled into shoe insoles to demonstrate energy harvesting performance in a practical application.

Publisher

IOP Publishing

Reference54 articles.

1. Wearable technology market share & trends report;Research,2023

2. Environmental impact of emerging contaminants from battery waste: a mini review;Melchor-Martínez;Case Stud. Chem. Environ. Eng.,2021

3. Waste battery disposal and recycling behavior: a study on the Australian perspective;Islam;Environ. Sci. Pollut. Res.,2022

4. E-textile technology review-from materials to application;Komolafe;IEEE Access,2021

5. Aligned PVDF-TrFE nanofibers with high-density PVDF nanofibers and PVDF core-shell structures for endovascular pressure sensing;Zeyrek Ongun;J. Mater. Sci., Mater. Electron.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3