Combined magnetic and electric field processing of polymer matrix composites for orthogonal control of hierarchical particle arrangements

Author:

Masud Md Abdulla AlORCID,Papula Dashiell,Erol AnilORCID,Edson Connor,Widdowson Denise,von Lockette ParisORCID,Ounaies Zoubeida

Abstract

Abstract Properties of particulate-filled polymer matrix composites are highly dependent on the spatial position, orientation and assembly of the particles throughout the matrix. External fields such as electric and magnetic have been individually used to orient, position and assemble micro and nanoparticles in polymer solutions and their resulting material properties were investigated, but the combined effect of using more than one external field on the material properties has not been studied in detail. Applying different configurations of electric and magnetic fields on geometrically and magnetically anisotropic particulates can produce varying microarchitectures with a range of material properties. Experimentally and with simulations, we systematically probe the effect of combined electric and magnetic fields on the microstructure formation of geometrically and magnetically anisotropic barium hexaferrite (BHF) in polydimethylsiloxane (PDMS). The magnetic and dielectric properties resulting from different microstructures are characterized and microstructure-property relationships are analyzed. Our results demonstrate that a variety of microarchitectures can be produced using multi-field processing depending on the nature of the applied external field. For example, the application of an electric field creates macro-chains where the orientation of the BHF stacks inside the macro-chains is random. On the other hand, application of a magnetic field rotates the BHF stacks within the macro-chain in the direction dictated by the magnetic field. In simulations, the dielectrophoretic, magnetic, and viscous forces and torques acting on the particles show that particle anisotropies are central to the ability to control orientation along the orthogonal magnetic and geometric axes, mirroring experimental results. The authors refer to the ability to manipulate particle orientation along orthogonal axes as ‘orthogonal control’. Using this technique, not only are a variety of microstructures possible, but also a range of dielectric and magnetic properties can result. For example, for 1 vol% BHF-PDMS composites, the experimental dielectric permittivity is found to vary from 2.84 to 5.12 and the squareness ratio (remnant magnetization over saturation magnetization) is found to vary from 0.55 to 0.92 (from 0.52 to 0.99 in simulations) depending on the applied external stimuli. The ability to predict and produce a variety of microstructures with a range of properties from a single material set will be particularly beneficial for resin pool based additive manufacturing and 3D printing.

Funder

National Science Foundation

CMMI

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3