Abstract
Abstract
In order to study the effect of large-sized graphite (Gr) sheet on the magnetorheological (MR) effect and sensing characteristics of MR elastomer (MRE), isotropic and anisotropic Gr-filled MRE samples with different carbonyl iron powder (CIP) contents were fabricated. The effect of Gr sheet on the microstructure, MR effect and sensing characteristics of the MRE samples were experimentally tested, and the mechanisms behind discussed. The results show that in the anisotropic MRE samples, the addition of Gr sheets results in the short particle chains formed between Gr sheets, thus leading to the high MR effect and low resistivity than those of isotropic counterparts. The non-monotonic resistivity responses of the Gr-filled MRE samples during compression were observed owing to the interlayer separation of Gr sheets and the reconstruction of conductive network. A higher piezoresistive response was observed from the isotropic Gr-filled MRE sample filled with the CIP content below the percolation threshold. The resistivities of the Gr-filled MRE samples decline with increasing the applied magnetic field. The isotropic sample filled with lower CIP content shows the higher magnetoresistive effect from the view point of absolute change in resistivity. While for the relative change in resistivity, the anisotropic sample filled with the higher CIP content has the higher magnetoresistive effect.
Funder
the Open Research Fund Program of Science and Technology on Aerospace Chemical Power Laboratory
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing