Frequency–dependence of power and efficiency for resonant inductive coupling and magnetoelectric wireless power transfer systems

Author:

Andersen Erik,Roundy Shad,Truong Binh DucORCID

Abstract

Abstract The frequency dependence of the maximum output power and efficiency of two wireless power transfer systems (WPTSs), resonant inductive coupling (RIC) and magnetoelectric (ME), are investigated. We find that in the weak–coupling regime, the power optimization and efficiency maximization problems are equivalent and yield the same optimal load and frequency. These properties apply to both topologies under consideration. Despite the apparent difference in the energy conversion mechanisms, the two structures result in similar explicit forms of maximum power delivered to the load, and so does the optimum transfer efficiency. We discuss the essential role of a figure of merit for each configuration and show how they affect the overall performance. For a weakly–coupled inductive WPTS, both the maximum transferred power and efficiency are positively proportional to drive frequency squared. In the case of a ME–based architecture, the dependence of power and efficiency on frequency is the consequence of the transducer geometry optimization problem, subject to a volume constraint. Under a constant mechanical quality factor condition, both quantities are linearly proportional to the operating frequency. While the focus of this paper is RIC and ME mechanisms, some of the findings are also valid for relevant inductive energy harvesting or magneto–mechano–electric WPTSs.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference45 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detuning piezoelectric receivers by resistive load adjustment for electrodynamic wireless power transfer;Smart Materials and Structures;2024-05-30

2. Machine learning in talkative power technology;Applications of Deep Machine Learning in Future Energy Systems;2024

3. Are piezoelectric-electromagnetic hybrid energy harvesting systems beneficial?;Smart Materials and Structures;2023-08-10

4. Overview of Talkative Power Conversion Technologies;IEEE Open Journal of Power Electronics;2023

5. Analysis of Wireless Power Transfer System Based on Electromagnetic Field Theory;2022 IEEE 5th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE);2022-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3