Fabrication and simulation study for vertical micro-TEGs based on printed circuit board manufacturing processes

Author:

Sherkat NeginORCID,Kattiparambil Sivaprasad AthiraORCID,Pelz UweORCID,Woias PeterORCID

Abstract

Abstract The development of fabrication procedures for micro-thermoelectric generators (µTEGs) based on low-cost fabrication technologies, appropriate for mass production is discussed and demonstrated in this study. Simulations were carried out, two manufacturing processes were tested, and device performance is compared to simulation results for vertical µTEGs. The substrate for this device is a printed circuit board, and the thermoelectric materials are self-developed Bi0.5Sb1.5Te3 (p-type) and Bi2Te2.7Se0.3 (n-type) pastes. A square µTEG (15 mm × 15 mm × 500 µm) with eight thermocouples (TCs) was fabricated. The characterization of the fabricated 8-TC-µTEG was carried out and a power output of 1.23 µW was obtained for the fabricated 8-TC-µTEG. The measurement results of this 8-TC-µTEG closely match simulation results as well. Moreover, a novel vertical electrical contact resistance measurement setup is designed and implemented into the final evaluation of µTEG production to have a more accurate assessment. The simulation study is also applied for the designed electrical contact resistance measurement setup. As a result, the contact resistivity of Bi2Te3/Cu was calculated as 5.65 × 10−4 Ωcm2.

Funder

Germany’s Excellence Strategy

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Early career scientists converse on the future of soft robotics;Frontiers in Robotics and AI;2023-02-22

2. A Fully Integrated Measurement Setup for the In-Situ Characterization of Vertical Thermolegs with the Help of the Transfer Length Method;2022 21st International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS);2022-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3