Development and experimental characterization of a large-capacity magnetorheological damper with annular-radial gap

Author:

Abdalaziz MoustafaORCID,Vatandoost HosseinORCID,Sedaghati RaminORCID,Rakheja SubhashORCID

Abstract

Abstract Magnetorheological (MR) dampers with bypass arrangements and combined annular-radial fluid flow channels have shown superior performance compared to conventional MR dampers with single annular/radial fluid flow gaps. Achieving a higher controllable dynamic force range with low off-state but high on-state damping force is yet a significant challenge for developing MR dampers for high payload ground vehicle suspensions. This paper presents the conceptual design, fabrication, and experimental characterization of a mid-sized large-capacity MR damper equipped with a compact annular-radial MR fluid bypass valve. Extensive experimental tests were conducted to investigate the dynamic characteristics of the proposed MR damper considering wide ranges of excitation frequency, loading amplitude, and electrical current. The equivalent viscous damping and the dynamic range were calculated as functions of loading conditions considered. The proposed damper initially realized the maximum dynamic range and damping force of 2.3 and 5.54 kN, respectively. With MR valve design modifications, the maximum dynamic range and damping force were substantially increased, reaching 5.06 and 6.61 kN, respectively. The effectiveness of the proposed MR damper was subsequently identified by comparing its dynamic range with other conventional MR dampers in previous studies. The results confirmed the superior performance of the proposed MR damper and its potential application for highly adaptive suspension systems for off-road wheeled and tracked vehicles.

Funder

Natural Sciences and Engineering Research Council

Department of National Defence

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference84 articles.

1. MR fluid, foam and elastomer devices;Carlson;Mechatronics,2000

2. The magnetic fluid clutch;Rabinow;Electr. Eng.,1948

3. Phenomenological model for magnetorheological dampers;Spencer;J. Eng. Mech.,1997

4. Dynamic characteristics and control of magnetorheological/electrorheological sandwich structures: a state-of-the-art review;Eshaghi;J. Intell. Mater. Syst. Struct.,2016

5. Performance analysis of rotary magnetorheological brake with multiple fluid flow channels;Hu;IEEE Access,2020

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3