Active signal-generating spacer-fabric-type continuous touch/pressure sensor

Author:

Tonomura Kazuki,Yu AnnieORCID,Ishii YuyaORCID

Abstract

Abstract Attention toward automated driving has recently increased. This has also increased the need to monitor drivers’ actions, such as finger touch/pressure sensing on the steering wheel. This study demonstrates an active signal-generating spacer-fabric-type continuous touch/pressure sensor comprising five yarn layers: surface-insulating cotton, upper conductive, monofilament spacer, lower conductive and bottom-insulating cotton yarn. The sensor actively generates signals, and the magnitude of the voltage output through a diode bridge and capacitor circuit determines if the fingers are ‘not touching’, ‘touching’, ‘pushing’ or ‘pushing hard’. This demonstrates that the proposed sensor can be operated as an active signal-generating touch/pressure sensor and can also detect ‘pushing hard’ actions. Furthermore, the active signal-generating operation originates from the electromagnetic waves emitted by electrical appliances and cables powered by a commercial power supply frequency in the environment. The proposed sensor will contribute to developing high-cushioning touch/pressure sensors with low power consumption and excellent air permeability that can be used in electric and autonomous vehicles.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3