Design and performance evaluation of electromechanical impedance instrumented quantitative corrosion measuring probe based on conical rods

Author:

Wang JianjunORCID,Wen Lijie,Liu Zhishun,Luo Mingzhang,Jia Sihui,Li WeijieORCID,Lan ChengmingORCID

Abstract

Abstract Previous study has proved that using electromechanical impedance instrumented bar-type corrosion measuring probe can realize the quantitative assessment of the corrosion amount. To gain more insights into the working mechanism and design better probes, this work examined a new type of corrosion measuring probe based on the conical rod, and evaluated their performance. Theoretical model of this type of new probes was established based on one dimensional piezo-elasticity theory, and the electrical impedance was derived to obtain first resonant and anti-resonant frequencies in longitudinal vibration mode. Two experiments were performed to validate the feasibility of the probe for corrosion measurement, including the artificial uniform corrosion experiment and the accelerated corrosion test. Comparisons between the theoretical predictions and the experimental results from the artificial uniform corrosion experiment were made, and good agreement was found. Effects of piezoelectric patch thickness and cone angle on first resonant and anti-resonant frequencies were also analyzed. In addition, a wireless impedance measurement system was preliminarily realized, which is very promising in developing the low cost and high accuracy online real-time monitoring technology for the pipeline corrosion monitoring.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3