High velocity impact on generic CFRP blade specimen: baseline free method for impact localisation and damage assessment on complex structures

Author:

Cuomo StefanoORCID,Bätzel TimORCID,Modler Niels,Hornig AndreasORCID,Meo MicheleORCID

Abstract

AbstractNowadays components made of unidirectional composite materials are largely diffused in many engineering fields, such as automotive, railways, marine and aerospace. Main drawback of this class of materials lies in their low out-of-plane properties making them very sensible to impulsive loads such as impact events. After a collision with an external object, composites structures could be affected by damage, sometimes not visible from visual inspections (barely visible damage) hence with detrimental consequences on structure resistance and strength. Therefore, it is fundamental in terms of safety to continuously assess the healthy state of structures during their life and determine whether an impact event has occurred and if it caused damage or not. This work proposes a baseline free methodology to determine the coordinates of very high velocity impact on complex structures and evaluate if damage has occurred during the impact by only acquiring signal during the impact event. The technique overcomes the common limitations of previous technique presented in literature, i.e.a prioriknowledge of mechanical properties, vibration response analysis, wave propagation direction dependency, sensor locations. The routine developed is based first on the estimation of the power of the acoustic emission generated by impact events, at sensors location, then the power information through the entire structure is reconstructed exploiting radial basis function network. The actual impact estimation is finally obtained using a weighted method. Furthermore, damage assessment is conducted with a novel method based on Hilbert–Huang transform and mode decomposition. Experimental tests were performed on a generic carbon fibre reinforced polymers blade specimen with a complex stacking sequence and embedded sensors. Two test configurations at different velocities were considered: one at 90 m s−1and one at 190 m s−1. Before and afterwards the actual impact tests, the blade was excited as well with a modal hammer (pre and post impact). The results from the impact analysis highlighted the validity and reliability of the proposed method, with a high level of accuracy in terms of impact localisation estimation, and qualitative integrity state was effectively evaluated.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3