Abstract
Abstract
An untethered system can realize wide-area activities of soft robots. Herein we develop an untethered DEA wheel (UD-wheel) with a dielectric elastomer actuator (DEA). DEA is a soft actuator driven by electrostatic force. This UD-wheel is a new rotating device that integrates an untethered system and stacked DEAs. The untethered system consists of a small battery and a small high-voltage circuit. All the components are assembled seamlessly. Because the circuit can control four DEAs, the active time that the circuit continues to control the DEAs with a small battery is estimated. The estimated time matches the experimental result. We evaluated the output torque and back-drivability achieved by stacked DEAs installed in a UD-wheel. We also built a theoretical model for an in-depth evaluation. The stacking DEAs method provides a better back-drivability than the reducer method. This study suggests that our untethered rotational system may provide novel functions in soft robotics.
Funder
Japan Society for the Promotion of Science
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献