Effect of shear thickening gel on structure and properties of flexible polyurethane foam

Author:

Liu XiaokeORCID,Yu KejingORCID,Sun Jie,Guo Wenwen,Qian KunORCID

Abstract

Abstract Compression and low-velocity impact properties of shear thickening gel/polyurethane foam (STG/PUF), a soft protective material, have been reported. In order to have a deeper understanding of the relationship between the structure and properties of this material, we utilized Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Proton nuclear magnetic resonance (1H-NMR) to study and prove that STG and polyurethane (PU) did not produce new chemical bonds during the blending process, which belongs to physical blending. Because the molecular chains of STG and PU are intertwined, the composites are endowed with higher thermal stability, safety protection performance, and shape memory performance. For instance, Young’s modulus (E) of the STG/PUF was automatically increased by 57% when stimulated by external forces at different rates and the Emax over 200 kPa, demonstrating a pronounced shear thickening effect. Shape memory tests showed that the shape fixity ratio of STG/PUF gradually increases with the increase of STG content, and the shape recovery ratio remained at 100%. More importantly, the STG/PUF was flexible and comfortable, had excellent mechanical properties and a longer service life, and can be extended to various human protective equipment.

Funder

the Fundamental Research Funds for the Central Universities

Postgraduate Research & Practice Innovation Program of Jiangsu Province

the National Key R&D Program of China

Postgraduate Research & Practice Innovation Program of Jiangnan University

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3