Study on the rheological and polishing properties of electromagnetic two-phase composite particles with abrasive characteristics

Author:

Chen ZhijunORCID,Pan JishengORCID,Yan Qiusheng,Huang Zhanliang,Zhang Fenglin,Chen Shumei

Abstract

Abstract Electromagnetic composite rheological polishing (EMRP) is a new ultra-precision machining technology that combines electro-rheological polishing (ERP) and magneto-rheological polishing (MRP). The key technology of the polishing method is the preparation of electromagnetic composite rheological fluid (EMRF) with both ERP and MRP, especially the preparation of composite particles with electro- and magneto-rheological effects. In this study, the EMRF was prepared by using electromagnetic two-phase particles with abrasive characteristics. The electromagnetic two-phase composite particles are synthesized in two steps: the coupling method and sol-gel method. The two-step method successfully prepared the electromagnetic two-phase composite particles with nano-diamond particles embedded randomly on the surface. The electro-rheological shear stress of EMRF can reach 160.7 Pa when the test parameter voltage is 2.5 kV, and magneto-rheological shear stress of EMRF can reach 4076 Pa when the electromagnet excitation current is 3 A. When a fused silica glass is polished under a single magnetic field, the material removal depth reaches a maximum of 2.7 μm at a radius of 13.5 mm. Under the action of the electromagnetic compound field, the removal profile of the work-piece is smoother, and the material removal depth reaches the maximum value of 2.1 μm at a radius of 10.5 mm. This proves that the stiffness distribution of the polishing pad under the electromagnetic composite field is more dispersed than that under a single field. Therefore, the distribution of electromagnetic two-phase composite particles can be controlled by applying an electromagnetic composite field, which provides a good foundation for the abrasive control technology of EMRP.

Funder

Foshan Science and Technology Innovation Project of China

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3