Enhancing piezoelectric energy harvesting from the flow-induced vibration of a circular cylinder using dual splitters

Author:

Wang JunleiORCID,Gu Shanghao,Abdelkefi AbdessattarORCID,Bose ChandanORCID

Abstract

Abstract Ambient energy harvesting from the vortex-induced vibration (VIV) of circular cylinders has been extensively studied in recent years. However, the effect of multiple splitters attached to the cylinder surface in different configurations on the energy harvesting performance is not well understood to date. This study is focused on enhancing the piezoelectric energy harvesting from the flow-induced vibration of a circular cylinder by using two symmetric splitters in different relative angular positions with respect to the oncoming uniform flow. Both wind tunnel experiments and numerical simulations are carried out to study the effect of seven different installation angles (α = 0, 30, 60, 90, 120, 150, and 180) of the dual splitters on the energy harvesting efficiency with the increasing flow velocity. It is observed that, in the absence of any splitter, the energy harvesting performance is constricted to the lock-in regime for the VIV of the circular cylinder. When the dual splitters are introduced at the positions of 0 and 120, energy harvesting is completely suppressed, and no voltage is generated. The transition from VIV to galloping is observed for the positions of 30, 60, 150, and 180. Among them, 60 is the optimal position, where the maximum output voltage increases up to 188.61% of that obtained from the harvester without any splitters. VIV with a reduced maximum output voltage is observed at the position of 90. The underlying vortex interactions behind the transitional dynamics are investigated by analyzing the flow-field. It is observed that the vortex formation length increases with the increase in the splitter angle, and the secondary vortices also play a key role behind the VIV to galloping transition. This study systematically carries out the performance analysis of the VIV-based energy harvester with multiple splitters for the first time in the literature and directly contributes to the optimized design of an innovative wind energy harvester with multiple splitter configuration.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3