Flexible and wearable sensor based on graphene nanocomposite hydrogels

Author:

Zhang YanORCID,Liang Bo,Jiang Qifeng,Li Yang,Feng Ying,Zhang Lingqin,Zhao Yiming,Xiong Xingliang

Abstract

Abstract Flexible and wearable sensor based on nanocomposite hydrogels has been proposed for monitoring the human large-scale, small-scale movements and several physiological signals. The nanocomposite hydrogel, prepared from graphene oxide (GO), polyvinyl alcohol (PVA) and polydopamine (PDA), exhibits excellent mechanical and electrical properties with tensile stress of 146.5 KPa, fracture strain of 2580%, fracture energy of 2390.86 KJ m−3, and the conductivity of 5 mS cm−1. In addition, it possesses other merits including good self-healing with the electrical self-healing efficiency of 98% of its original resistance within 10 s, and strong self-adhesion onto a variety of surfaces of materials. This self-adhesive, self-healing, graphene-based conductive hydrogel can further assembled as wearable sensors to accurate and real-time detect the signals of human large-scale motions (including bending and stretching fingers joints, wrists joints, elbows joints, neck joints and knees joints) and small-scale motions (including swallowing, breathing and pulsing) through fracturing and recombination of reduced graphene oxide (rGO) electrical pathways in porous structures of hydrogel networks. Furthermore, the hydrogel can also be used as self-adhesive surface electrodes to detect human electrophysiological (ECG) signals. Therefore, the hydrogel-based wearable sensor is expected to be used for long-term and continuous monitoring human body motion and detecting physiological parameters.

Funder

Chongqing Research Program of Basic Research and Frontier Technology

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3