Laboratory evaluation of climbing helmets: assessment of linear acceleration

Author:

Begonia MarkORCID,Rowson Bethany,Scicli Blake,Goff John Eric

Abstract

Abstract This study utilized a guided free-fall drop tower and standard test headform to measure the peak linear acceleration (PLA) generated by different climbing helmet models that were impacted at various speeds (2–6 m s−1) and locations (top, front, rear, side). Wide-ranging impact performance was observed for the climbing helmet models selected. Helmets that produced lower PLAs were composed of protective materials, such as expanded polystyrene (EPS) or expanded polypropylene, which were integrated throughout multiple helmet regions including the front, rear and side. Climbing helmets that produced the highest PLAs consisted of a chinstrap, a suspension system, an acrylontrile butadiene styrene (ABS) outer shell, and an EPS inner layer, which was applied only to the top location. Variation in impact protection was attributed not only to helmet model but also impact location. Although head acceleration measurements were fairly similar between helmet models at the top location, impacts to the front, rear, and side led to larger changes in PLA. A 300 g cutoff for PLA was chosen due to its use as a pass/fail threshold in other helmet safety standards, and because it represents a high risk of severe head injury. All seven helmet models had the lowest acceleration values at the top location with PLAs below 300 g at speeds as high as 6 m s−1. Impact performance varied more substantially at the front, rear, and side locations, with some models generating PLAs above 300 g at speeds as low as 3 m s−1. These differences in impact performance represent opportunities for improved helmet design to better protect climbers across a broader range of impact scenarios in the event of a fall or other collision. An understanding of how current climbing helmets attenuate head acceleration could allow manufacturers to enhance next-generation models with innovative and more robust safety features including smart materials.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3