Analytical modeling and simulation of a multifunctional segmented lithium ion battery unimorph actuator

Author:

Gonzalez CodyORCID,Ma Jun,Frecker Mary,Rahn Christopher

Abstract

Abstract Lithium-ion batteries (LIBs) are able to achieve large deformation and high actuation force when using a unimorph configuration and a silicon composite anode. Distribution of charge to different segments allows for shape change with only small parasitic losses due to internal resistance. A unique attribute of LIB actuators are their ability to maintain actuation shape. The actuation mechanism also requires no power to be consumed to maintain the deformed shape. Segmenting the unimorph improves the customizability and allows for spatial variation of the unimorph parameters. Spatially varying the charge and thickness of the unimorph along the length improves the range of motion and complex shapes achievable by this design. Spatially varying the thickness of the unimorph specifically allows for improved blocked force and actuation force per volume. An analytical model is developed to predict several key actuator metrics. Free deflection is found for a variety of example cases. Blocked deflection and blocked force are also found using a novel modified equivalent end moment method. Actuation force is found using a combination of both the free deflection and blocked force equations herein developed. Euler–Bernoulli beam theory is used, including the effects of beam segmentation and curvature shortening. This model and a commercial finite element analysis simulation are compared and experimentally verified.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3