Optimizing dispensing performance of needle-type piezoelectric jet dispensers: a novel drive waveform approach

Author:

Cao LiangORCID,Gong S G,Tao Y R,Duan S Y

Abstract

Abstract The dispensing performance of needle-type piezoelectric jet dispenser constitutes a crucial factor that ensures the quality of additive manufacturing processes. In this paper, a novel approach is proposed to enhance the dispensing performance of needle-type piezoelectric jetting dispensers by introducing a more adaptable driving waveform based on Bézier curves. Initially, the approach considers the electromechanical coupling effect of the needle-type piezoelectric dispenser and constructs a high-precision fluid–solid coupling model of the dispensing process. Subsequently, a multi-physics field joint simulation platform combining Matlab and Fluent is established to systematically analyze control strategies in real service conditions. Next, a new driving waveform based on Bézier curves is introduced, and the control parameters are optimized using a genetic algorithm to address issues such as air bubbles in the droplets and instability of the dispensing process. The optimized waveform based on the Bézier curve reduces the volume of air suction during the dispensing process by over 20% compared to the traditional waveform and eliminates the uncontrolled vibration state of the needle in the fluid, ensuring the stability of the entire fluid refill process. Finally, the optimized control strategy is verified through experiments and compared with traditional methods. The experiment demonstrates its advantages in addressing issues with no air bubbles in the droplets and consistency of the droplets. This study provides valuable insights into optimizing the dispensing performance of needle-type piezoelectric jetting dispensers regarding control strategy.

Funder

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3