A Lamb waves-based wireless power transmission system for powering IoT sensor nodes

Author:

Xu YunfeiORCID,Sun Yongshun,Tang Jian,Wei Chao,Ding Xiaoxi,Huang WenbinORCID

Abstract

Abstract Sensor nodes (SNs) are widely deployed for condition monitoring within closed thin-walled structures. Conventional wired power supply using cables will affect the structural integrity, and wireless power supply based on inductive coupling will be shielded by metal structures, therefore, neither is desirable. Motivated by these issues, this article presents a Lamb waves wireless power transmission (WPT) technology based on piezoelectric wafer active sensors (PWASs). A PWAS with a diameter of 7 mm was used to excite A0 single-mode Lamb waves on a 1.6 mm aluminum plate at a frequency of 150 kHz for power transmission. Two optimization strategies for the Lamb waves-based WPT system were proposed and designed, including electrical impedance matching and beamforming with a linear PWAS array. The optimization effects of these two methods were analyzed experimentally. By combining these two approaches, the maximum received power is 1.537 mW, which is 384.25 times higher than that without the optimization method. The corresponding transmission efficiency is 0.217%, which is 43.4 times higher than that without the optimization method. A power management circuit was built with a maximum output power of 1.41 mW and a corresponding conversion efficiency of 77.5%. Finally, an internet-of-things (IoT) SN is designed, and a test proves that the proposed WPT system can power IoT SNs.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3