Effect of branched structure on microphase separation and electric field induced bending actuation behaviors of poly(urethane–urea) elastomers

Author:

Zeng Haibing,Fu Silian,Liang YongriORCID,Liu LiORCID

Abstract

Abstract Polyurethane elastomers as a type of electroactive polymers have wide applications in soft actuators, soft sensors and energy harvesting due to their high dielectric constant, high electrostriction coefficients, easy processing and structure adjustability, and superior biocompatibility etc. However, the relationship between microstructure and electromechanical properties of EAEs has not been fully understood. In this work, we fabricated the branch structured poly(urethane–urea) elastomers (PUUs) using hydroxy-terminated polybutadiene as soft segment, isophorone diisocyanate and 4,4-diaminodicyclohexylmethane as hard segment, and hydroxyl-terminated four-armed polycaprolactone (PCL410) as branch structured chain extender for improving bending actuation performances, and understanding the relationship between structure and electromechanical properties. The degree of branched structure of PUUs were adjusted by the content of PCL410. The microphase separation kinetics of PUUs was enhanced as increase of PCL410 content, whereas the degree of microphase separation and hard domain size of PUUs were reduced. The mechanical loss and bending actuation stress of PUUs were significantly improved by incorporation of small amount of branched structure into PUU chains. The PUU with 2.60 mol.% of PCL410 showed 5.16 mm of bending displacement and 5.16 Pa of bending actuation stress at 7.2 kV (corresponding to 180 V mm−1 of the nominal electric field), which were 76.3, and 79 times higher than that of PUU without PCL410, respectively. The electric field induced bending actuation mechanism of branch structured PUUs was suggested that the bending actuation mechanism of branch structured PUUs is caused by electrostrictive effect from dipole orientation induced bending deformation of constrained segments and asymmetric charge density distribution on both anode and cathode sides of PUU films. Our results can provide new insight on design novel electroactive polyurethane elastomers.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3