Electrical/thermal triggering on shape memory composite tubes with different braiding angles

Author:

Yang Qin,Liu Renyi,Gu BohongORCID,Sun BaozhongORCID,Han Chaofeng,Zhang WeiORCID

Abstract

Abstract 2D braided shape memory composite (SMPC) tubes, with near-net shape manufacturing and programmable, are widely utilized in smart structures. Here we have developed braided tubes of continuous carbon fiber reinforced shape memory polyurethane (SMPU) composites. This innovative design yields a synergistic boost in both mechanical strength, shape memory functionality, and dual-trigger responsiveness. The mechanical properties, electrical/thermal shape memory performance, and recovery force of the SMPC tubes with various braiding angles have been investigated. The effects of braiding angle, temperature dependence, and applied current on the mechanical properties and shape memory properties were revealed. We found a substantial increase in compression load and ring stiffness as the braiding angle increased and the temperature decreased. The SMPC tubes exhibited a recovery ratio of 99% under electrical and thermal triggering, demonstrating a more rapid shape recovery compared to the SMPU tubes solely under thermal triggering. The large-angle specimens exhibited shorter recovery times, higher recovery forces (up to 11.40 N), and faster responses upon electrical stimulation. The ability of SMPC tubes to generate a recovery force several times greater than their weight holds great potential for expanding the applications of smart actuators.

Funder

Shanghai Frontiers Science Center of Advanced Textiles

Key science and technology Project of Henan Science and Technology Department

Fundamental Research Funds for the Central Universities of China

National Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3