FSI and non-FSI studies on a functionally graded temperature-responsive hydrogel bilayer in a micro-channel

Author:

Mazaheri HashemORCID,Khodabandehloo Amin

Abstract

Abstract Taking into account both fluid-structure interaction (FSI) and non-FSI simulations, the deformation of a bilayer is investigated in this paper. The bilayer, which is utilized in a micro-channel, consists of a Functionally-graded (FG) temperature-responsive hydrogel layer and an incompressible elastomeric one. Allocating two different positions to the elastomeric layer, we make two different bilayers where in one of them, the elastomer layer is located on the left (LSE) and on the right (RSE) in another one. Also, to see the effect of grading, two bilayers with homogenous hydrogel layers with different amounts of cross-linking density are considered. For FG cases in which the hydrogel layer’s properties vary through thickness direction, both ascending and descending arrangements are analyzed. Each simulation, whether it is FSI or non-FSI, is conducted utilizing three software. FLUENT for fluid domain examinations, ABAQUS for finite element method analysis, and MpCCI to couple two aforementioned simulation domains. By extracting and comparing both simulations results, it is observed that the influence of the fluid flow is very significant and should not be ignored. Moreover, it is discovered that the fluid flow affects more the RSE configuration and also the bilayers with lower amounts of cross-linking density. Finally, we investigate how some parameters, such as inlet pressure, can affect the behavior of the bilayer.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference61 articles.

1. Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels;Cai;J. Mech. Phys. Solids,2011

2. Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels;Guo;Smart Mater. Struct.,2013

3. Phase transition effects on mechanical properties of NIPA hydrogel;Zhang;Polymers,2018

4. Analytical and numerical study of the swelling behavior in functionally graded temperature-sensitive hydrogel shell;Mazaheri;J. Stress Anal.,2019

5. Temperature-responsive bending of a bilayer gel;Morimoto;Int. J. Solids Struct.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3