Design, simulation, and motion characteristics of a novel impact piezoelectric actuator using double stators

Author:

Pan QiaoshengORCID,Zhao MingfeiORCID,Wang YaORCID,Li ChenORCID,Huang QiangxianORCID,Huang BinORCID,Li RuijunORCID

Abstract

Abstract This study presents a novel impact piezoelectric motor that excites double stators through a sinusoidal signal. A sawtooth signal drives the traditional impact piezoelectric actuator, and its working frequency is limited by the resonant frequency. This study uses sine signals to drive the double stators to produce a sinusoidal vibration. The sinusoidal vibration of different frequencies and amplitudes are synthesised into a sawtooth vibration on the stage plate. The directional movement of the slider is realised using the vibration of the stage plate to drive the slider. This structure reduces the space required for the piezoelectric actuator to work. The working principle of the motor is discussed, and the structure is constructed. The dynamics model of the whole system is established on the based of the dynamics model of the actuator and the LuGre friction model. Moreover, the dynamics model was simulated and analysed through MATLAB/Simulink. The prototype is fabricated and tested. Experimental results confirm the effectiveness of using sinusoidal signals to drive the piezoelectric actuator, and the motion process of the piezoelectric motor is consistent with the theoretical analysis. The maximum speed of the piezoelectric actuator is 5.54 mm s−1, and the resolution is 0.72 μm. This study provides an effective driving method for the quasi-static piezoelectric motor to improve the working frequency.

Funder

Project of National Natural Science Fund of China

Central Universities

Research and Development Plan

Anhui Laboratory

Special Display and Imaging Technology Innovation Center

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3