Transient thermal fracture analysis of ferroelectric ceramics under electromechanical loading

Author:

Khatib Omar ElORCID,Kuna MeinhardORCID,Kozinov SergeyORCID

Abstract

Abstract During their applications, ferroelectric devices are subjected not only to electromechanical loading but also to thermal fields, inducing additional stresses and impairing their functionality. Additionally, internal heat generation can occur by the dissipation of the inelastic work resulting from ferroelectric hysteresis. Moreover, at extreme electromechanical field concentrations like cracks, ferroelectric devices may fail by brittle fracture or fatigue. In the present study, the thermal effects on the fracture behavior of ferroelectric ceramics are investigated. The well-established micromechanical material model for ferroelectric domain switching is enhanced to represent the fully coupled thermo-electro-mechanical behavior. The coupling considers the pyroelectric and thermal strains effects. The internal heat production, which leads to transient temperature fields, is taken into account, as well as the temperature dependency of material parameters. The thermo-electro-mechanical fields at the crack tip are analyzed using a boundary layer approach for small-scale switching conditions. A fully transient heat conduction problem is considered, emphasizing the effect of the driving frequencies on heat generation. The configurational forces concept combined with the thermo-electro-mechanical extension of the J-integral are used to analyze the impact of the different factors on the crack driving energy.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3