An analytical approach to the stress relaxation behavior of a low temperature shape-memory fabric based on viscoelastic models

Author:

Jafari Horastani Sahar,Ghane MohammadORCID,Karevan Mehdi,Zadhoush Ali

Abstract

Abstract Shape-memory materials are a promising new class of smart materials with many applications such as strain sensors, artificial muscles, and smart breathing textiles. These materials are subjected to force and extension in situ. Thus, the time-dependent behavior of these materials can play an important role in their long-term performance. The present study was conducted to investigate the time-dependent behavior of a type of shape-memory fabric. Nanoclay-reinforced polylactic acid/thermoplastic polyurethane was used as the precursor. The yarn that was produced was highly twisted. The twisted yarn was then shaped into a coiled structure by mandrel annealing. This yarn was then used to produce knitted fabric. The fabric was examined under both cold (25 °C) and hot (50 °C) conditions. The fabric contracted in hot water in the course direction but did not show a significant contraction in the wale direction. It returned to its original width in cold water. This effect was observed repeatedly over several cycles. This shows that the knitted fabric composed of the precursor twisted-coiled yarn exhibited low-temperature actuation and reversible two-way shape-memory behavior. A value of %16 was calculated for the contraction stroke along the course direction. The stress relaxation behavior of the two-way shape-memory fabric was then studied and analyzed. For this purpose, four different viscoelastic models were considered: the standard linear model (a), Burgers model (b), Jeffrey model (c), and Kelvin-Voigt-Maxwell model (d). We used the curve fitting procedure to find the best fit to the experimental data based on the least-squares method. The results showed that the Kelvin-Voigt-Maxwell model (model d) exhibited a higher and more acceptable regression coefficient (R 2) than the other three models. The Jeffrey model showed the lowest regression coefficient (R 2), thus confirming that it is not suitable for explaining the relaxation behavior of the fabric. However, a limitation of Model (d) is that it is not in line with the experimental loading stage. To modify the model, we propose the replacement of the dashpot with a dynamic frictional element. The results indicate that the proposed dynamic friction model can eliminate the limitations of the dashpot body during the loading stage.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3