Improved electroadhesive force by using fumed alumina/PDMS composites

Author:

Lim HanwhuyORCID,Hwang GeonwooORCID,Kyung Ki-Uk,Kim Baek-JinORCID

Abstract

Abstract This work interrogates polymer-nanoparticle (NP) composites in electroadhesive (EA) devices to establish relationships among EA force generation and various parameters such as applied voltage, distance, gap between electrodes, dielectric constant, and the surface roughness. High permittivity is especially key for enhancing EA force thus it was modified by inorganic NP-elastomer composite. Fumed SiO2 or Al2O3 NPs were selected as the dielectric material for their homogeneity and permittivity. The NPs were mixed at 1–10 wt% in a polymer resin by using a planetary mixer and subsequently three-roll mill. The distributions of NPs in the composite were established by scanning electron microscopy, energy dispersive x-ray spectroscopy, thermogravimetric analysis, and viscosity measurements. Composites with 10 wt% of Al2O3 showed improvements in mechanical strengths from 1.5 to 2.7 MPa and dielectric constants from 3.4 to 3.6 versus pristine poly(dimethylsiloxane) (PDMS). Flexible EA devices were fabricated by stacking interdigitated electrode patterns and composite films onto a PET substrate, subsequently. An EA device that integrated an Al2O3/PDMS composite with a 10 wt% Al2O3 content achieved force generation as high as 612 mN cm−2, which is two times higher than the pristine PDMS-coated gripper.

Funder

Korea Institute of Industrial Technology

Ministry of Trade, Industry and Energy

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3