Abstract
Abstract
This paper aims to develop a surrogate model for dynamics analysis of a magnetorheological damper (MRD) in the semi-active seat suspension system. An improved fruit fly optimization algorithm (IFOA) which enhances the global search capability of the original FOA is proposed to optimize the structure of a back propagation neural network (BPNN) in establishing the surrogate model. An MRD platform was fabricated to generate experimental data to feed the IFOA-BPNN model. Intrinsic patterns about the MRD dynamics behind the datasets have been discovered to establish a reliable MRD surrogate model. The outputs of the surrogate model demonstrate satisfactory dynamics characteristics in consistence with the experimental results. Moreover, the performance of the IFOA-BPNN based surrogate model was compared with that produced by the BPNN based, genetic algorithm-BPNN based, and FOA-BPNN based surrogate models. The comparison result shows better tracking capacity of the proposed method on the hysteresis behaviors of the MRD. As a result, the newly developed surrogate model can be used as the basis for advanced controller design of the semi-active seat suspension system.
Funder
Taishan Scholar Foundation of Shandong Province
Priority Academic Program Development of Jiangsu Higher Education Institutions
National Natural Science Foundation of China
Australian Research Council
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献