Abstract
Abstract
Due to the interference of the magnetic field, regular motors are not suitable for precision transport in strong magnetic fields. With their insensitivity to magnetic fields, piezoelectric materials can be used to develop novel conveyors to bridge that gap. This paper aims to develop a simple piezoelectric beam conveyor based on the standing wave principle, and explore the effect of the height of the teeth on the piezoelectric beam and the number of piezoelectric plates on the motion. Based on the Euler–Bernoulli beam theory and Lagrange equation, the Chebyshev polynomial is used as the admissble displacement function to establish the numerical model. And the ANSYS is used to verify the correctness of the numerical model calculation results. It is analyzed the effect of tooth height on motion efficiency from theory and experiment, respectively. And the effects of voltage amplitude, frequency, preload force, and the driving quantity of piezoelectric plates on the slider motion speed and driving force are discussed. The conclusion is informative for the selection of tooth and preload force.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献