Switching plasmonic resonance in multi-gap infrared metasurface absorber using vanadium dioxide patches

Author:

Negm AymanORCID,Bakr MohamedORCID,Howlader Matiar,Ali Shirook

Abstract

Abstract Reconfigurable metasurface absorbers enable collecting or emitting radiation within selected frequency bands. It is thus necessary to decipher such behavior for many applications, including plasmonic energy harvesting, radiative cooling and thermal emitters. In this article, we propose a compact reconfigurable vanadium dioxide (VO2)-based metasurface absorber/emitter to demonstrate switching between dual and single-band absorption modes in the mid-infrared regime. The unit cell of the design employs a four-split gold circular ring resonator with gaps filled with VO2 patches. The phase-transition property of VO2 between semiconductor and metallic states is used to control the mode of operation of the metasurface absorber. When VO2 is in the semiconductor state, a dual-band absorption at 6 μm and 10.6 μm is obtained. When it attains a metallic state, the metasurface exhibits a single-band absorption at 8.25 μm. To achieve the maximum absorption efficiency in both single and dual-band modes, adaptive wind-driven optimization was employed as a global optimization technique. The proposed absorber provides polarization-independent behavior for both Transverse Electric and Transverse Magnetic polarizations. Moreover, the proposed design shows above 80% absorptance for incidence angle up to 45° for the dual-band mode, and up to 35° for the single-band mode. When operating the absorber as a tunable emitter, a switching of 79% in emissivity is achieved at 8.25 μm. These favorable findings may facilitate the development of important devices for temperature regulation, smart windows, and thermal imaging.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3