A novel two degree of freedom single magnet bistable energy harvester based on internal resonance

Author:

Huang WenbinORCID,Chen Zhiwen,Lin WanrongORCID,Wang Sijia,Xie ZhengqiuORCID

Abstract

Abstract Up to now, many nonlinear techniques such as bistable structure have been used to harvest vibration energy from the environment to achieve a wide response bandwidth. However, most bistable harvesters require two opposing magnets to form the potential energy function, which limits the miniaturization of the harvesters. In this paper, a two-degree-of-freedom U-shaped single magnet bistable energy harvester (SMBEH) based on the internal resonance technique is proposed. The harvester consists of a U-shaped beam, a magnet and a tip mass. The governing equations of the system are derived and the output performance of the harvester is obtained through numerical simulation and experiments which are in good agreement. The proposed SMBEH can achieve low frequency energy harvesting by utilizing a 1:2 internal resonance. When the excitation amplitude is equal to 0.4 g, the SMBEH can produce a significant output in two frequency ranges from 7 Hz to 7.7 Hz and 11.7 Hz to 15.73 Hz, which broaden the output frequency band. In the end, the output performance of SMBEH at different resistances and the charging performance were verified, respectively.

Funder

Research and Development Program of China

Science and Technology Research Program of Chongqing Municipal Education Commission

Natural Science Foundation of Chongqing

Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3