Influence of electric field, temperature, humidity, elastomer material, and encapsulation on the lifetime of dielectric elastomer actuators (DEAs) under DC actuation

Author:

Albuquerque Fabio BecoORCID,Shea HerbertORCID

Abstract

Abstract We present the effect of electric field, temperature, humidity, type of elastomer material, and encapsulation on the lifetime of silicone-based dielectric elastomer actuators (DEAs) under DC electric fields. DEAs are promising soft actuators, but little has been reported on their reliability under static electric fields. We report that humidity and electric field are the dominant accelerating factors for device failure, and that a thin encapsulation layer can increase lifetime by more than an order of magnitude with negligible reduction in actuation strain. Our samples are expanding circle, single layer, prestretched films with 5 mm diameter compliant electrodes, operated at electric fields from 80 V µm−1 to 110 V µm−1, with actuation strains from 2% to 6%. We compare four different silicone elastomers, finding highest lifetime with Momentive Electro 242-1, five times higher than Elastosil 2030. Typical mean time to failure (MTTF) for Elastosil 2030 based DEAs at 100 V μm−1, 85 °C and 85% RH are 1.6 h, but this value increases to over 200 h at 20% RH. At 85 °C and 85% RH, the MTTF decreases by a factor of 62 when increasing the electric field from 80 V μm−1 (2.1% actuation strain) to 100 V μm−1 (4.6% actuation strain). Adding a thin, soft silicone encapsulation layer is an effective yet simple strategy to increase DEA lifetime, increasing the MTTF by factors from 2.2 to 75 under humid conditions. Extrapolating from our data, we predict that DC lifetimes above 1000 h can be achieved at fields below 70 V μm−1 (i.e. ≈1.5% strain) for Elastosil 2030/20 DEAs, and below 85 V μm−1 (i.e. ≈2.5% strain) for encapsulated DEAs at 85 °C—85% RH.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3