Self-powered pressure sensor based on microfluidic triboelectric principle for human–machine interface applications

Author:

Goh Qi Lun,Chee PeiSongORCID,Lim Eng HockORCID,Liew Guo Guang

Abstract

Abstract In pace with the fourth industrial revolution, the human–machine interface (HMI) has prospered due to the need of information exchange between human and machines. Although tremendous effort has been devoted to the development of various sensors for HMI systems, those that are made using rigid electronics have constraints in wearability, comfortability, and power consumption. In this paper, a wearable and stretchable self-powered pressure sensor is proposed based on the microfluidic triboelectric principle. Triboelectric output is produced through the charge electrification when the pre-filled liquid in the reservoir flows into a polydimethylsiloxane-made microchannel at an applied pressure. The pressure sensor can generate a peak-to-peak output voltage of 4.2 mV–42.6 mV when an input pressure ranging from 50 kPa to 275 kPa was applied. We further characterize the dynamic response of the pressure sensor where the peak-to-peak output voltage is seen to have increased from 0.2 mV to 11.5 mV when the frequency of the compression pressure is raised from 1 Hz to 13 Hz. As a proof of principle in demonstrating the pressure sensor for wearable HMI application, the soft pressure sensor was attached on a human finger to function as a touch button. The touch button was then used to control a real-time light-emitting diode illumination and gaming interaction. Unlike the conventional touch button that only produces a binary output, this compact touch button can emulate a real-time impact event from the applied pressure. These remarkable features enrich the sensing dimension for HMI, which shows the potential of our work for advanced human-machine manipulation.

Funder

Fundamental Research Grant Scheme

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3