High-efficient and intelligent antibacterial face mask integrated with airflow-temperature dual-function sensors for respiratory monitoring and disease prevention

Author:

Lan XingziORCID,Chen Xinyu,Chen Xin,Fan Hao,Zheng Hehui,Wang Han,Tang YadongORCID

Abstract

Abstract Intelligent face masks play crucial roles in health monitoring and disease prevention, having attracted huge attention in recent years. However, most of the current intelligent face masks focus on monitoring single physical signal, which were unable to provide comprehensive information. Herein, an intelligent face mask with airflow and temperature sensing abilities, high-efficiency filtration and excellent antibacterial activity was proposed. The real-time airflow monitoring was realized by a triboelectric nanogenerator (TENG), which was composed of electrospun nanofibrous membrane and polydimethylsiloxane (PDMS) composite film. The fabricated electrospun nanofibrous membrane simultaneously played roles as tribo-positive material, filter and antibacterial membrane. The PDMS composite film prepared by co-blending and surface modification was applied as tribo-negative material. It was found that the combination of co-blending and surface modification enhanced the tribo-negative property of the PDMS film, resulting in an increment of output performance of TENG. The TENG integrated into a face mask could monitor respiratory rate and respiration intensity in real time. Additionally, the temperature sensing was achieved by a serpentine PDMS/laser-induced graphene temperature sensor. The temperature sensor exhibited a temperature coefficient of resistance of 0.316% °C−1, which could detect subtle temperature variations. Furthermore, the electrospun nanofibrous membrane exhibited excellent filtration performance and antibacterial activity. Therefore, the prepared intelligent face mask showed promising potential for healthcare applications.

Funder

Science and Technology Planning Project of Guangdong Province

Guangdong Basic and Applied Basic Research Foundation

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3