Tunable stiffness design of curved-crease origami and extended quasi-zero stiffness vibration isolator

Author:

Zhou YaORCID,Tachi Tomohiro,Cai Jianguo,Feng Jian

Abstract

Abstract A kind of origami tube based on the curved crease, which has a tunable stiffness, was designed, fabricated, tested, and extended to the concept of a quasi-zero stiffness (QZS) vibration isolator. The regulating function of crease stiffness on the overall origami stiffness without changes in the crease pattern was verified by single-crease models. With various opening ratios along the creases, three tubes composed of mirrored single-crease origami were designed, fabricated by 3D printing, and compressively tested. The test results present the potential of the approach of QZS. Further, the elastic-frictionless origami tubes were redesigned and simulated to obtain the target stiffness. The cubic term fitting of the load curve was adopted by the harmonic balance method to solve the steady-state vibration response, and then the simulation results obtained by the finite element method (FEM) were compared. The study shows that the designed elastic-frictionless isolator has a good low-frequency vibration isolation performance. The concept of the simple stiffness control method of curved-crease origami provides more practice options for high static and low dynamic stiffness systems.

Funder

National Natural Science Foundation of China

Innovation Support Plan-International Cooperation Project

China Scholarship Council

the Special Foundation for Central Guidance of Local Science and Technology of Shenzhen, China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3