Evaluation of a vascularized, self-healing structure fabricated via material extrusion

Author:

Turicek JackORCID,Kowal Eirene,Holland Kyle,Kalchik Dylan,Stowe Jonathan,Hart Kevin

Abstract

Abstract Material extrusion is a versatile 3D-printing platform for building complex one-off designs. However, the mechanical properties of parts printed using material extrusion are limited by the weak bonding between successive layers of the print, causing premature failure at these critical locations. In this work, an additively manufactured component is crafted which incorporates internal vascular channels capable of autonomously delivering a one-part healing agent to the site of interlaminar damage, when and where it occurs thereby restoring the base structure. The effectiveness of fracture toughness restoration was investigated for various healing times and healing agents. Healing efficiencies of greater than 100% are reported for experimental-type samples using acetone as the healing agent while control specimens using a non-solvent agent demonstrated no recovery. Fractography of damaged surfaces via optical imaging and scanning electron microscopy revealed multiple healing mechanisms that are discussed herein. Lastly, biological analogies and the viability of our design in application are discussed.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference63 articles.

1. Rapid prototyping journal a review of melt extrusion additive manufacturing processes: I. Process design and modeling;Turner,2014

2. Optimizing fused filament fabrication 3D printing for durability: tensile properties and layer bonding;Johansson,2016

3. Interfacial mechanical behavior of 3D printed ABS;Cole;J. Appl. Polym. Sci.,2016

4. Effect of layer orientation on mechanical properties of rapid prototyped samples;Es-Said;Mater. Manuf. Process.,2000

5. Effect of infill parameters on tensile mechanical behavior in desktop 3D printing;Fernandez-Vicente;3D Print. Addit. Manuf.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3