A novel chain-cluster model of magnetorheological elastomer for the dynamic mechanical performance research

Author:

Fan LiliORCID

Abstract

Abstract The existing research on magnetorheological elastomer (MRE) mainly focused on the improvement of MRE formula and structural design of MRE devices. As to the microscopic mechanism, less research has been done. Based on the scanning electron micrograph of MRE, a novel chain-cluster model of MRE was constructed in this study. Particle size and particle distance were introduced simultaneously to the constitutive relation of MRE. The dynamic mechanical properties of MRE are studied theoretically and experimentally. Using the constructed chain-cluster model of MRE, the effect of magnetic field, particle volume fraction and strain on the magnetic-induced modulus of MRE were simulated. Rotating rheometer was adopted to test the magnetic response characteristics of MREs. Simulation and test results showed that the maximum magnetic-induced modulus tested experimentally was in good agreement with that calculated theoretically. Thus, the constructed chain-cluster model of MRE shows an important role in the field of intelligent vibration. It not only makes great sense in the prediction of MRE property but provides guidance on the property improvement of MRE.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference26 articles.

1. Controllability of magnetorheological isolator. Part II: testing and analysis;Bai;Smart Mater. Struct.,2018

2. Magnetorheological elastomer-based materials and devices: state of the art and future perspectives;Díez;Adv. Eng. Mater.,2021

3. On the magneto-elastic properties of elastomer–ferromagnet composites;Borcea;J. Mech. Phys. Solids,2001

4. Study on macroscopic and microscopic mechanical behavior of magnetorheological elastomers by representative volume element approach;Sun;Adv. Condens. Matter Phys.,2014

5. Analysis and verification on the chain-like model with normal distribution of magnetorheological elastomer;Yu;Chin. J. Chem. Phys.,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3