Electrostatic-driven soft air pump with segmented electrodes

Author:

Zhao Jindong,Xu MingORCID,Zhang Yongfa,Yu Tang,Sun Hualiang

Abstract

Abstract Pneumatic soft robots have become a popular research area for future robots because of their lightweight, high efficiency, non-pollution, and high reliability. However, the pneumatic pump, which is the ‘heart’ of these robots, is large in size, heavy in weight, noisy in operation, and must be separated from the robot body, which seriously affects the portability and autonomy of the robot. Portable soft pumps fabricated using smart materials provide a viable solution to the above challenges. We present a segmented electrode pump (SEP) driven by electrostatic forces, which combines the advantages of an electro-pneumatic pump (EPP) and an enhanced electrode structure. Compared with the EPP, the developed SEP showed improved characteristics in terms of higher specific flow rate output (1.67 ml s∙g−1), higher specific pressure output (0.483 kPa g−1) and lower power consumption (24 mW). The proposed SEP is expected to provide new solutions to the challenges of embedding air sources and facilitating air supply flexibility, and opens up new opportunities for fully flexible robots.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Scientific Research Project of Zhejiang Provincial Department of Education

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3