A forward-inverse dynamic model for the hydraulic damping(magnetorheological) actuator based on cyclic stress–strain

Author:

Ma BaizhouORCID,Huang HuiORCID,Huang Jiabo,Lin XiufangORCID,Huang Qiufang,Chen Shumei

Abstract

Abstract Magnetorheological dampers (MRDs) are applied to hydraulic systems, which not only improve the underdamped characteristics of valve-controlled cylinder systems, but also help hydraulic actuators to resist high load impact. However, the high power density leads to the complexity of the internal flow channel of the damper, which seriously affects the output accuracy of the damping force. It can lead to the fact that existing dynamics models cannot accurately describe the hysteresis characteristics of the MRD. Therefore, this study proposes a simple and general dynamic model of MRD, which solves the problem that existing models are complex and difficult to invert. Firstly, the hydraulic damping actuator with the series MRD is taken as the research object. Based on the stress–strain hysteresis characteristics under the cyclic constitutive model, the hyperbolic tangent curve is reorganized and normalized. It can accurately describe the yield formation and yield dissipation stages of the hysteresis loop. Secondly, the relationship between the parameters of the dynamic model and the current is obtained according to the mechanical experimental data. Then the inverse model of the MRD is established by using the method of section-backstepping. Finally, in the static experiment, the mean absolute percentage error (MAPE) of the force at different velocity is less than 7.5%; in the dynamic experimental test, the MAPE of the force is 9.7%. The inverse dynamics model is verified to have high tracking performance under both static and dynamic forces. And it also indirectly confirms the effectiveness of the forward model.

Funder

General Project of Natural Science Foundation of Fujian science and Technology Department

National Natural Science Foundation of China

2022 Fujian Provincial Central Leading Local Science and Technology Development Fund - Project Research and Application of Embedded Double Transport Technology for Expressway Fast Cleaning

Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3