Control of vibration in a plate using active acoustic black holes

Author:

Hook KORCID,Cheer JORCID,Daley S

Abstract

Abstract Acoustic black holes (ABHs) are structural features that can be embedded into plates to provide effective structural damping. However, the performance of an embedded ABH is limited by its size, which determines the ABH cut-on frequency. It is not always practicable to increase the size of an ABH to reduce its cut-on frequency, however, previous work has shown that active vibration control can instead be used to enhance the low frequency performance of an ABH beam termination. This paper presents an investigation into the potential performance benefits that can be achieved by implementing active control into an array of ABHs embedded in a plate, realising an array of active ABHs (AABHs). The potential performance advantage is investigated here through experimental investigations, where different configurations of passive and active control treatments are applied to both a plate with embedded ABHs and a constant thickness plate. The smart structures utilise piezoelectric patches to realise the control actuation and employ an active feedforward multichannel vibration control strategy that aims to minimise the structural response monitored by an array of accelerometers. The performance of each plate configuration is evaluated in terms of the attenuation in the structural response and the energy, or control effort required. The presented experimental results demonstrate that, compared to the constant thickness plate configuration, the AABHs provide considerable passive damping above the ABH cut-on frequency and significantly reduce the required control effort.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3