Abstract
Abstract
A compound-driven magnetorheological (MR) valve is designed to cope with the low reliability and high energy consumption of traditional MR valves. The operating magnetic field of the valve is applied by both the excitation coil and ring magnet, maintaining excellent pressure drop performance even at zero current. To analyze the performance and obtain the variation law of the magnetic flux density and pressure drop, a pressure drop mathematical model and a magnetic field simulation model are established. The key parameters of the MR valve are also optimized using non-dominated sorting genetic algorithms-II. A dynamic performance test system is built, and the influence of the load on the pressure drop and hysteresis characteristics of the MR valve is studied. The results show that the optimized pressure drop and adjustable coefficient are improved by 4.7% and 8.6% respectively. The pressure drop grows nonlinearly with the electric current and reaches saturation at a current of 1.5 A, and a pressure drop of 1485 kPa is still generated at zero current. The output damping force of the compound-driven MR valve-controlled damper can be continuously adjustable, indicating that the dynamic performance of the damper can be controlled by adjusting the input current.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献