Investigations on mechanical properties and stacking sequence of Kevlar/banana fiber reinforced nano graphene oxide hybrid composites

Author:

Shubham S KartikORCID,Pandey Ajay,Purohit Rajesh

Abstract

Abstract This paper focuses on the fabrication of a new hybrid polymer composite laminate (HPCL) using biodegradable materials to avoid dumping of waste and has all the desired characteristics as compared to the conventional matrix composites used in various applications such as aerospace, railways cabin, structures, sports equipment, medical field, etc. Utilizing the hand lay-up method and compression molding machine, six layers of Kevlar fiber, banana fiber, and an epoxy-based matrix reinforced with graphene oxide (GO) were fabricated. By altering the stacking order of fibers in which the HPCL were stacked and embedding GO of various weight percentages (0 wt%, 0.25 wt%, 0.50 wt%, 0.75 wt%, and 1 wt%). As a result, it was seen that the best mechanical characteristics were found to be 42.23 MPa interlaminar shear strength, flexural strength, 300.39 MPa tensile strength, and 85.68 hardness were obtained at set C-2 i.e. 0.5 wt% of GO embedded in KKBBKK stacking order. The 0.25 wt% of GO of HPCL of set C-1 yielded the impact strength with the greatest value of 771.6 J m−1. Field emission scanning electron microscopy, energy dispersive x-ray mapping and x-ray diffraction tests were also conducted for validating the homogeneity of the material. All the mechanical properties were enhanced by embedding GO and incorporating stacking order in HPCL. Therefore, HPCL can be used where lightweight material with proper mechanical strength and biodegradability is an important condition for sustainable development.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3