Reversible negative compressibility metamaterials inspired by Braess’s Paradox

Author:

Zha JinmengORCID,Zhang ZhenORCID

Abstract

Abstract Negative compressibility metamaterials have attracted significant attention due to their distinctive properties and promising applications. Negative compressibility has been interpreted in two ways. Regarding the negative compressibility induced by a uniaxial load, it can only occur abruptly when the load reaches a certain threshold. Hence, it can be termed as transient negative compressibility. However, fabrication and experiments of such metamaterials have rarely been reported. Herein, we demonstrate them. Inspired by Braess’s paradox, a novel mechanical model is proposed with reversible negative compressibility. It shows multiple types of force responses during a loading-unloading cycle, including transient negative compressibility and hysteresis. Phase diagrams are employed to visualize the relationship between force responses and system parameters. Besides, explicit expressions for the conditions and intensity of negative compressibility are obtained for design and optimization. The model replacement method inspired by compliant mechanism design is then introduced to derive specific unit cell structures, thus avoiding intuition-based approaches. Additive manufacturing technology is utilized to fabricate the prototypes, and negative compressibility is validated via simulations and experiments. Furthermore, it is demonstrated that metamaterials with transient negative compressibility can be activated through electrical heating and can function as actuators, thereby possessing machine-like properties. The proposed mechanical metamaterial and the introduced design methodology have potentials to impact micro-electromechanical systems, force sensors, protective devices, and other applications.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3