Flexible, highly sensitive and reliable piezocapacitive pressure sensor with honeycomb-like microarchitecture fabricated using filament-processed mold

Author:

Su YueORCID,Zhang Rui,Liu Kun,Chang Yukuan,Mao Xurui,Zhang Xu

Abstract

Abstract Highly sensitive flexible pressure sensors have been extensively studied due to their promising applications in many fields. Various sensing mechanisms have been proposed to convert pressure into a readable electrical signal, among which piezocapacitive presents advantages due to its simple structure and convenient integration. The modification of the dielectric layer composing these sensors is a common strategy to improve their sensing performance. In this paper, we propose the fabrication of a novel capacitive-based flexible pressure sensor with honeycomb-like microarchitecture by using femtosecond laser filament based far-field technique. The fabricated flexible sensing device is assembled face-to-face with two layers of micro-structured polydimethylsiloxane thin films that is duplicated from laser filament-processed silicon mold. The as-prepared flexible sensor features excellent sensing performance with high reliability, and enables detection of multi-modal signals, including pressure, proximity, and bending. Owing to the advantages mentioned above, the obtained flexible pressure sensor can be attached on non-planar human skin to monitor the physiological signals as well as joint deformation during exercise, revealing it great application potential in cutting-edge fields, such as robotic tactility.

Funder

Doctoral Research Foundation Program of Liaoning Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3