A Hamiltonian graph model for the cooperative toughening of crystalline phases and covalent adaptable networks in semi-crystalline thermoset epoxy

Author:

Zhang Jing,Lu HaibaoORCID,Elmarakbi Ahmed,Fu Yong-Qing

Abstract

Abstract The existence of bond exchange reactions and covalent adaptable networks (CANs) in thermoset epoxy has facilitated its self-healing and reversible mechanical capabilities. However, the toughening mechanisms and cooperative coupling of these crystal phases and CANs in a semi-crystalline thermoset epoxy have not been well understood. In this study, a Hamiltonian graph model is formulated to examine toughening mechanisms in the semi-crystalline thermoset epoxy based on the vertices and paths, both of which are employed to describe the crystalline phases and CANs, respectively. A free-energy equation is also developed based on the tail and tie free energy functions to investigate the cooperative coupling of crystal phases and CANs. The crystal phases increase the cross-linking density of the CANs, which helps the crystal phases with a homogeneous dispersion. Moreover, an extended Maxwell model is developed along with the Hamiltonian graph to explore the coupling effect of crystal phase and CAN on the mechanical behaviors of semi-crystalline thermoset epoxy. A constitutive stress–strain relationship is then proposed to describe the self-healing and toughening behaviors of semi-crystalline thermoset epoxy. The stress–strain relationship of semi-crystalline polymers, which incorporates crystal phases and CANs, has been thoroughly investigated using the analytical results obtained from the proposed Hamiltonian graph model. Finally, the effectiveness of the proposed model is verified using the finite element analysis method and a set of experimental data.

Funder

National Natural Science Foundation of China

International Exchange Grant through Royal Society UK and the NSFC

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3